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RELATIVE RANDOMNESS AND REAL CLOSED FIELDS

ALEXANDER RAICHEV

Abstract. We show that for any real number, the class of real numbers less random

than it, in the sense of rK-reducibility, forms a countable real closed subfield of the real

ordered field. This generalizes the well-known fact that the computable reals form a real

closed field.

With the same technique we show that the class of differences of computably enumerable

reals (d.c.e. reals) and the class of computably approximable reals (c.a. reals) form real

closed fields. The d.c.e. result was also proved nearly simultaneously and independently

by Ng (Keng Meng Ng, Master’s Thesis, National University of Singapore, in preparation).

Lastly, we show that the class of d.c.e. reals is properly contained in the class of reals

less random than Ω (the halting probability), which in turn is properly contained in the

class of c.a. reals, and that neither the first nor last class is a randomness class (as captured

by rK-reducibility).

§1. Introduction. What does it mean for one real number to be less ran-
dom than another? In attempts to answer this question, to measure the relative
randomness of reals, computability theorists have invented a variety of preorders
(reflexive and transitive relations) on (various representations of) the reals, al-
most all of which are motivated by the prefix-free complexity characterization of
absolute randomness. Roughly, we say an infinite binary sequence α, thought of
as the binary representation of the fractional part of a real number, is random
if its initial segments are incompressible (patternless). More precisely, we say α
is random iff

(∃c)(∀n) K(α � n) ≥ n − c,

where K(σ) is the prefix-free complexity of the binary string σ.
Recently, Downey, Hirschfeldt, and LaForte [2] introduced a new preorder

called relative Kolmogorov (rK) reducibility. Based on conditional prefix-free
complexity, rK-reducibility turns out to be both a natural, general measure of
relative randomness and a measure of relative computability (as a refinement
of Turing reducibility), making it a promising tool in the study of the interplay
between algoritmic randomness and traditional computability theory.

In this paper we explore one aspect of this interplay by grouping reals into
randomness classes (as captured by rK-redcubility) and seeing how these relate
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to several well-studied computational classes of reals. We also investigate the
algebraic and analytic properties of both types of classes.

Before beginning, let us set some conventions and notation. N and ω denote
the set of natural numbers {0, 1, 2, . . .}. For ease of reading, we use quanti-
fiers somewhat informally, and all unbounded quantification takes place over the
natural numbers or objects coded by natural numbers. C.p.f. abbreviates ‘com-
putable partial function(s)’. n2 denotes the set of binary strings of length n
(functions from n to 2), <N2 denotes the set of binary strings (functions from
initial segments of ω to 2), and N2 denotes the set of (infinte) binary sequences
(functions from ω to 2). |σ| denotes the length of a binary string σ. For n ∈ N,
0n denotes the string of n zeros. For x ∈ R and n ∈ N, x � n denotes the trun-
cation of the binary expansion of x (both the integer and fractional part) up to
and including the first n bits past the binary point. 〈 〉 delimits ordered tuples
and sequences, and for each s ∈ N+, let \ \ : Ns → N be a lexicographically
strictly increasing computable bijection (coding function).

Let us also recall the following standard computational classes of reals. A real
number x is computable iff there exists a computable sequence of rationals
〈q : s ∈ N〉 converging effectively to x, that is, there is a computable function
e : N → N such that for all n ∈ N

s ≥ e(n) → |qs − x| ≤ 2−n.

Equivalently, x is computable iff the binary sequence of the binary exapansion
of the fractional part of x is a computable function. A real number x is com-
putably enumerable (c.e.) iff there is a computable increasing sequence of
rationals converging to x. A real number x is a difference of c.e. reals (d.c.e.)
iff there exist c.e. reals y, z such that x = y−z. A real number x is computably
approximable (c.a.) iff there is a computable sequence of rationals converging
to x (with no further restrictions on the sequence). Let Rc denote the class of
computable reals, Rc.e. the class of c.e. reals, Rd.c.e. the class of d.c.e. reals, and
Rc.a. the class of c.a. reals. These classes are properly contained in each other:
Rc ⊂ Rc.e. ⊂ Rd.c.e. ⊂ Rc.a. (see [1] by Ambos-Spies, Weihrauch, and Zheng for
instance).

§2. Real Closed Fields. We begin with the definition of rK-reducibility.

Definition 2.1 (Downey et al. [2]). For α, β ∈ N2, α ≤rK β iff

(∃c)(∀n) K(α � n|β � n) ≤ c,

where K(σ|τ) is the conditional prefix-free complexity of σ given τ as input
(see [5] for more details).

It is straightforward to check that ≤rK is indeed a preorder on N2 and that
the following useful equivalencies hold.

Theorem 2.2 (Downey et al. [2]). For α, β ∈ N2,

α ≤rK β
⇔ (∃c)(∀n) C(α � n|β � n) ≤ c
⇔ (∃c.p.f. ϕ :⊆ <N2 × N → <N2)(∃c)(∀n)(∃i<c) ϕ(β � n, i)↓= α � n,
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where C(σ|τ) is the conditional (plain) complexity of σ given τ as input (again,
see [5] for more details).

Also, as alluded to in the introduction, we have the following nice properties
of ≤rK.

Theorem 2.3 (Downey et al. [2]). For α, β ∈ N2,

• α ≤rK β ⇒ (∃c)(∀n) K(α � n) ≤ K(β � n) + c;
• α ≤rK β ⇒ (∃c)(∀n) C(α � n) ≤ C(β � n) + c;
• α ≤rK β ⇒ α ≤T β.

Thinking of ‘rK-reducible to’ to mean ‘less random than’ (though ‘less than
or equally random as’ would be more precise), we can group real numbers into
randomness classes. To this end, we use the last characterization of ≤rK in
Theorem 2.2 rephrased slightly in terms of reals. For x, y ∈ R, x ≤rK y iff

(∃c.p.f. ϕ :⊆ Q × N → Q)(∃c)(∀n)(∃i<c) ϕ(y � n, i)↓= x � n.

In this case we write x = [ϕ, c]y. Now, given y ∈ R, let

Ry = {x ∈ R : x ≤rK y},
the class of reals less random than y.

Perhaps surprisingly, each Ry has tame algebraic and analytic structure; each
is a real closed field. This generalizes the well-known fact that Rc, the class
of computable reals, forms a real closed field 1 in the following sense. x ∈ R

is computable iff x ≤T ∅ (identifying x with the binary sequence of the binary
expansion of its fractional part) iff x ≤rK 0 (remember that rK-reducibility is a
refinement of T-reducibility). Thus Rc = R0, that is, the class of computable
reals is the randomness class R0 (or Ra, for any computable real a). Notice also
that R0 ⊆ Ry for all y.

For the rest of this section, fix a randomness class Ry. As a first step to
showing Ry is a real closed field, we introduce a large class of functions under
which Ry is closed, the weakly computable locally Lipschitz functions.

Definition 2.4. Let s ∈ N+, E ⊆ Rs be open, and f : E → R.

• f is locally Lipschitz iff for each x ∈ E there is an open set E0 ⊆ E
containing x on which f is Lipschitz, that is

(∃M ∈R+)(∀~x, ~y∈E0) |f(~x) − f(~y)| ≤ M |~x − ~y|,
where | | is the Euclidean norm.

• f is weakly computable iff f � E ∩ Qs uniformly outputs computable
reals in the following sense:

(∃c.p.f. f̂ :⊆ Qs × N → Q)(∀~q)(∀n) ~q ∈ E ∩ Qs → f̂(~q, n)↓= f(~q) � n

• f is weakly computable locally Lipschitz (w.c.l.L.) iff f is weakly
computable and locally Lipschitz.

1see [8] by Pour-El and Richards for instance.



4 ALEXANDER RAICHEV

Remark 2.5. It is easy to see that weakly computable Lipschitz functions are
computable, and computable functions are weakly computable. 2 Also, as a
fact from elementary real analysis, locally Lipschitz functions on compact do-
mains are Lipschitz. Thus w.c.l.L. functions on compact domains are computable
functions. We could use the stronger notion of ‘computable function’ instead of
‘weakly computable function’ throughout, but weak computability suffices, and
its critereion is slightly easier to check.

The following two lemmas and short comment thereafter explain why w.c.l.L.
functions interact so well with rK-reducibility.

Lemma 2.6. If f : E ⊆ Rs → R is locally Lipschitz, then for all ~x ∈ E

(∃C)(∀n>C) |f(~x) − f(~x � n)| < 2C−n,

where ~x � n = 〈x0 � n, . . . , xs−1 � n〉.
Proof. Suppose f : E ⊆ Rs → R is locally Lipschitz and ~x ∈ E. Then there

is an open E0 ⊆ E containing ~x such that f is Lipschitz on E0. Thus

(∃M ∈Q+)(∀~y∈E0) |f(~x) − f(~y)| ≤ M |~x − ~y|
⇒ (∃M ∈Q+)(∀∞n) |f(~x) − f(~x � n)| ≤ M

√
s2−n

(since (∀∞n) ~x � n ∈ E0 and (∀∞n) |~x − ~x � n| ≤
√

s2−2n =
√

s2−n)
⇒ (∃C)(∀n>C) |f(~x) − f(~x � n)| < 2C−n.

a
Lemma 2.7. Let x, y ∈ R and C, n ∈ N with n > C. If |x − y| < 2C−n, then

there exist j < 2 and ρ ∈ C+12 such that [y + (−1)j0.0n−C−1 ̂ρ] � n = x � n.

Proof. An easy exercise in binary addition. a
Using Lemma 2.6 and Lemma 2.7 we can now show that Ry is closed under

w.c.l.L. functions. The basic idea is this. Suppose ~x ∈ (Ry)s and f is a weakly
computable locally Lipschitz function. Since f is locally Lipschitz, the first n bits
of f(~x), which we want via an rK-computation from y, are just the first n bits of
[f(~x � n) + fuzz], which we can get via an rK-computation from y since the fuzz
is of bounded variability. The hypothesis of weak computability on f ensures
that the partial function we build witnessing rK-reducibility is computable.

Lemma 2.8. Let s ∈ N+. If ~x ∈ (Ry)s, f : E ⊆ Rs → R is w.c.l.L, and ~x ∈ E,
then f(~x) ∈ Ry.

Proof. For notational niceness let us prove the special case s = 2. The
general proof is no more difficult. Suppose ~x = 〈x0, x1〉 ∈ (Ry)2, say x0 =
[ϕ0, c0]

y and x1 = [ϕ1, c1]
y. Since f is locally Lipschitz, there exists, by Lemma

2.6, C ∈ N such that for all n > C,

|f(~x) − f(~x � n)| < 2C−n.

So by Lemma 2.7, (∀n>C)(∃j <2)(∃ρ∈C+12)
[
f(~x � n) + (−1)j0.0n−C−1 ̂ρ

]
� n = f(~x) � n.

2For a definition of ‘computable’ in this sense see [8] by Pour-El and Richards for instance.
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Now, list C+12 as ρ0, . . . , ρ2C+1−1, and let θ :⊆ Q × N → Q be defined by

θ(τ, \i0, i1, j, k\) =
[
f(ϕ0(τ, i0), ϕ1(τ, i1)) + (−1)j0.0|τ |−C−1 ̂ρk

]
� |τ |

if i0 < c0, i1 < c1, j < 2, k < 2C+1, |τ | > C and undefined otherwise. θ is a
c.p.f. since f is weakly computable, and for all n > C there is \i0, i1, j, k\ <
\c0, c1, 2, 2C+1\ such that

θ(y � n, \i0, i1, j, k\) = [f(~x � n) + correct fuzz] � n

(since ~x ≤rK y)

= f(~x) � n

So f(~x) ≤rK y via a slightly altered constant that only depends on c0, c1, and
C and a slightly altered c.p.f. θ′ that deal with the (finitely many) exceptional
n ≤ C. a

Of course, this result is vacuous unless w.c.l.L. functions actually exist. They
certainly do. To see this, let us dig up a helpful fact from real analysis: if f
is differentiable on E (with E open), then f is locally Lipschitz on E. Since
+, −, ·, /, and

√
are differentiable and certainly weakly computable, they

are examples of w.c.l.L. functions (restricting domains where necessary). Key
examples, in fact, because with these and just a little more real analysis we can
reach our goal.

Theorem 2.9. 〈Ry , +, ·, <〉 is a countable real closed field.

Proof. First we show that Ry forms a countable ordered field. Ry is nonempty
since it contains the computable reals. It is countable since rK-reducibility im-
plies Turing reducibility and the Turing cone below a function is countable. Ry

is certainly ordered by <, since it is a set of real numbers. Also, given a, b ∈ Ry,
a − b and a/b (for b 6= 0) are both in Ry by Lemma 2.8, since, as mentioned
previously, subtraction and division are w.c.l.L. functions.

Lastly, we show that the field is real closed, that is, every positive real number
in Ry has a square root in Ry, and every odd degree polynomial with coefficients
in Ry has a root in Ry.

A positive real less random then y has a square root less random than y by
Lemma 2.8 since

√
(away from 0) is w.c.l.L.

Odd-degree polynomial roots present a little more difficulty. Let f(x) = c0 +
c1x + · · · + cmxm ∈ Ry[x] be of odd degree. Then f has a root r ∈ R and there
exists an open interval with rational endpoints (a, b) on which f changes sign
and has no other roots. We show r ∈ Ry.

First off, we may assume without loss of generality that r is a root of multi-
plicity 1. To see this, note that if r has multiplicity k > 1, then k must be odd,
because f(x) = (x − r)kg(x) for some polynomial g(x) which does not change
sign on (a, b). (If g(x) changed sign on (a, b), then, by the Intermediate Value
Theorem, g and hence f would have a root different from r on (a, b), a contra-
diction). Thus f (k−1), the (k − 1)st derivative of f , is an odd-degree polynomial
with coefficients in Ry having r as a root of multiplicity 1, and so we can work

with f (k−1) instead of f .
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Now, to do the heavy lifting we bring in some more real analysis. Let O ⊆
Rm+1 be an open ball containing ~c = 〈c0, . . . , cm〉 and let F : (a, b) × O → R

be the polynomial defined by F (x,~v) = w0 + w1x + · · · + wmxm. Then F is
continuously differentiable on (a, b)×O, F (r,~c) = 0, and ∂F/∂x(r,~c) = f ′(r) 6= 0
(since r has multiplicity 1). Thus, by the Implicit Function Theorem and its proof
(see [9] by Rudin for instance), there are open balls U and V such that

(i) r ∈ U ⊆ (a, b), ~c ∈ V ⊆ O (and U has rational endpoints)
(ii) for all ~v ∈ V , F (x,~v) is 1-1 on U
(iii) there is a unique continuously differentiable G : V → U such that

(∀~v∈V ) F (G(~v), ~v) = 0.

With this we show that G is w.c.l.L. and conclude that r = G(~c) ∈ Ry (by
Lemma 2.8 since ~c ∈ (Ry)m+1). Since G is differentiable (by iii), G is locally
Lipschitz. So we just need to show that G is weakly computable. For any
~q ∈ V ∩Qm+1, F (x, ~q) is 1-1 on U (by ii) and has exactly one root in U (by iii).
So, by applying the standard binary search algorithm on U ⊆ (a, b) (which is
independent of ~q; see [8] by Pour-El and Richards), F (x, ~q) has a computable real
root. (Note that for any rational d, F (d, ~q) is rational, hence it can be decided
whether F (d, ~q) = 0, F (d, ~q) < 0, or F (d, ~q) > 0.) Since G(~q) is that real (by
iii), it follows that G is weakly computable. a

§3. The Reals Less Random Than Ω. We now narrow our view and look
more closely at one particular randomness class, the class of reals less random
than the halting probability Ω. Downey et al. [2] showed that, in analogy to
every c.e. set being T-reducible to the halting set, every c.e. real is rK-reducible
to Ω; in symbols, Rc.e. ⊆ RΩ. In fact, even more is true.

Proposition 3.1. Rd.c.e. ⊆ RΩ ⊆ Rc.a..

Proof. Since Rc.e. ⊆ RΩ and RΩ is closed under subtraction (by Lemma
2.8), Rd.c.e. ⊆ RΩ. Also, if x ∈ RΩ, then x ≤rK Ω, implying that x ≤T Ω ≡T K.
Therefore the fractional part of x is the characteristic function of a ∆0

2 set, so
that x ∈ Rc.a.. Thus RΩ ⊆ Rc.a.. a

The last implication in the proof above follows from a result essentially due
to Ho [3]:

Lemma 3.2. x ∈ Rc.a. iff x is ∅′-computable (there is a ∅′-computable se-
quence of rationals converging effectively to x) iff the fractional part of x is the
characteristic function of a ∆0

2 set.

Moreover, using the same technique from the previous section, we get the
following.

Theorem 3.3. 〈Rd.c.e., +, ·, <〉 is a countable real closed field.

Theorem 3.4. 〈Rc.a., +, ·, <〉 is a countable real closed field.

Rd.c.e. and Rc.a. are clearly countable since there are only countably many
computable sequences of rationals. They are also real closed fields via the same
proof used in Theorem 2.9, because they are closed under w.c.l.L. functions. This
closure follows from the lemmas below.
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Lemma 3.5 (Ambos-Spies et al. [1]). x ∈ Rd.c.e. iff there is a computable se-
quence of rationals 〈q : i ∈ N〉 converging to x such that

∑
i∈N

|qi+1 − qi| < ∞.

Recall that a sequence of reals 〈x : i ∈ N〉 is computable iff there is a
double computable sequence of rationals 〈qij〉i,j∈N and a computable function
e : N2 → N such that for all i, n

j ≥ e(i, n) → |qij − xi| ≤ 2−n.

Lemma 3.6 (Ambos-Spies et al. [1]). If a computable sequence of reals 〈x :
i ∈ N〉 converges to x such that

∑
i∈N

|xi+1 − xi| < ∞, then x ∈ Rd.c.e..

Lemma 3.7. Let s ∈ N+. If ~x ∈ (Rd.c.e.)
s, f : E ⊆ Rs → R is w.c.l.L, and

~x ∈ E, then f(~x) ∈ Rd.c.e..

Proof. Let ~x and f be as above. By Lemma 3.5 there is a computable
sequence of vectors 〈~q : i ∈ N〉 from Qs that converges to ~x such that

∑
i∈N

|~qi+1−
~qi| < ∞. Since f is locally Lipschitz, there is an open neighborhood E0 of ~x on
which f is Lipschitz, that is

(∃M ∈R+)(∀~u,~v∈E0) |f(~u) − f(~v)| ≤ M |~u − ~v| (?).

Without loss of generality, assume that 〈~q : i ∈ N〉 ⊆ E0. Since f is weakly

computable, (∀i)(∀n) |f̂(~qi, n)− f(~qi)| ≤ 2−n, so that 〈f(~qi)〉i∈N is a computable
sequence of reals. Also, limi→∞ f(~qi) = f(limi→∞ ~qi) = f(~x) (since locally
Lipschitz functions are continuous). Lastly, by (?),

∑
|f(~qi+1) − f(~qi)| ≤ M

∑
|~qi+1 − ~qi| < ∞.

So f(~x) ∈ Rd.c.e. by Lemma 3.6. a
That Rd.c.e. forms a real closed field was also proved nearly simultaneously

and independently by Ng [7].

Lemma 3.8 (Zheng and Weihrauch [10]). If a computable sequence of reals
〈x : i ∈ N〉 converges to x, then x ∈ Rc.a..

Lemma 3.9. Let s ∈ N+. If ~x ∈ (Rc.a.)
s, f : E ⊆ Rs → R is w.c.l.L, and

~x ∈ E, then f(~x) ∈ Rc.a..

Proof. This follows from a simplified version of the proof of Lemma 3.7 and
from Lemma 3.8. Of course, this also follows by relativiziing the argument for
the real closedness of Rc using Lemma 3.2, but the first approach illustrates the
power of w.c.l.L. functions. a

§4. Proper Containment. So Rd.c.e. ⊆ RΩ ⊆ Rc.a., and all three classes
form countable real closed fields. Is RΩ equal to either Rd.c.e. or Rc.a.? Notice
that both can not be true since Rd.c.e. ⊂ Rc.a.. An affirmative answer would
yield intriguing alternate characterizations of both classes involved. However,
this is not the case.

Theorem 4.1. Rd.c.e. 6= RΩ.

Theorem 4.2. RΩ 6= Rc.a..



8 ALEXANDER RAICHEV

Proof of 4.1. We need to construct α ∈ N2 such that α ≤rK Ω and 0.α is not
a d.c.e. real. Instead of making α ≤rK Ω directly, we construct a c.e. real 0.β such
that α ≤rK β; here we use the fact that all c.e. reals are rK-reducible to Ω. The
construction is a ∅′-priority argument, where we meet, for all c.p.f. x :⊆ N → Q

(possible computable sequences of rationals), the following requirements.
Requirements.

Rx : (
∑

s∈N

|xs − xs+1| ≤ 1 → 0.α 6= lim
s→∞

xs) ∧ (∃θ) α = [θ, 2]β .

These requirements are sufficient since, by a slight modification of Lemma 3.5,
every d.c.e. real x has a computable sequence of rationals 〈x : s ∈ N〉 converging
to it such that

∑
s∈N

|xs − xs+1| ≤ 1.
Plan for Rx. To ensure 0.α 6= lims→∞ xs, we flip a big bit of α exponentially

often so that 0.α becomes a super jumping bean. Eventually xs will tire and fail
to keep up, for xs, being restricted by the condition

∑
s∈N

|xs − xs+1| ≤ 1, can

make at most 2k jumps of distance at least 2−k (for any k).
More formally, a worker for this requirement proceeds as follows.

1. Pick a big number (‘bigbit’) n. In particular, n should be bigger than
nr +

∑
i≤n 22ni , where n0, . . . , nr are all the bigbits mentioned so far in the

construction. Extend α and β (which were formerly of lenth nr) to length
n by padding them with zeros. We call (nr, n] ‘n’s gap’. Also,

θ(β � (n + 1), 0) := α � n 〈̂0〉
θ(β � (n + 1), 1) := α � n 〈̂1〉

θ(β � w, 0) := α � w for all w ∈ (nr, n).

2. Wait for

t∑

s=0

|xs − xs+1| ≤ 1 and |0.α − x| < ε := 2−n−3,

(with the convention that all the terms of the sum must be defined) where t
is the current stage of the construction. While waiting, each time α � (n+1)
changes below nr (because of higher priority workers), add 2−n−1 to 0.β,
that is, increment n’s gap in β by the minimum amount for each change,
and redefine θ for bits [nr, n + 1) just as in (1). Notice that changes in
α � (n + 1) above nr require no redefining of θ, because the 〈0〉 and 〈1〉
cover these.

3. α(n) := 1 − α(n).
4. Go back to (2).

Outcomes for Rx. As we show in the verification, there is only one final
outcome, namely waiting at (2) forever; there is no infinite cycling through the
plan’s loop. In this case, 0.α 6= lims→∞ xs.

Construction. We do a simple (relatively speaking) tree construction (see
Lempp’s notes [4] for instance). The requirements are ordered effectively with
order type ω, and requirement R is assigned to a worker sitting on level/node R
of a unary branching tree (which grows down, say).
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no redefining θ needed
when bit n changes

θ

α

β

n0 nr

n’s gap in β (very long)

increment n’s gap in β and

these bits changes
and redefine θ when one of

n

Figure 1. How bits change.

At each stage t ∈ N+ of the construction, workers s < t act in order down the
tree carrying out their plans from where they last left off at the previous stage
up until time t, with the last/new worker at level t − 1 beginning at step (1).
Here time is measured by the number of stages in the simulation of the Turing
machines involved. At each stage each worker has only one current outcome,
namely waiting at step (2) (steps (3) and (4) do not count as using up time).

In this construction the workers do not really interfere with each other; there is
no firing or rehiring of workers depending on different current outcomes. When
higher priority workers (closer to the top/root of the tree) change α or β, lower
priority workers (farther from the top/root of the tree) deal with the behavior
easily by incrementing their gaps in β according to step (2).

Verification. Each worker on the final (only) schedule satisfies its Rx require-
ment.

To see this, fix a worker with plan Rx and bigbit n. When the worker goes
from (2) to (3), bit n of α flips so that (the current approximation of) 0.α
changes/jumps by 2−n−1. For the worker to reach (3) again (the current ap-
proximation of) x must jump by more than 2−n−2 = 2−n−1 − 2ε to get back
inside 0.α’s ε-ball. Actually, x might not jump by that much, because once x
is outside of 0.α’s ε-ball, 0.α might move toward x due to α’s other bigbit flips.
However, considering these flips, we get that x jumps by more than 2−n−3 (big-
bit flips by bits smaller than n, move 0.α tremendously so that x will certainly
have to jump by more than 2−n−2; bigbit flips by bits bigger than n move 0.α by
less than 2−n−3 (a bound obtained from a simple geometric series calculation;
remember that bigbits are chosen extremely far apart from each other) so that
x jumps by more than 2−n−3 = 2−n−2 − 2−n−3).

Now, to maintain the condition
∑ |xs − xs+1| ≤ 1, x can jump by ≥ 2−n−3

only ≤ 2n+3 times. Thus after 2n+3 passes from step (2) to (3) in the plan’s
loop, the worker must wait forever at (2).

Also, α = [θ, 2]β by construction.
Lastly, 0.β is a well-defined c.e. real. Each ni flips ≤ 2ni+3 times and each

flip increments n’s gap in β by 2−n, but the gap is at least
∑

i≤n 22ni long and
is therefore big enough to absorb these additions without spilling carry bits into
other gaps. a
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Proof of 4.2. We construct α ∈ N2 as the characteristic function of a ∆0
2

set such that α 6≤rK Ω via simple diagonalization. By Lemma 3.2, 0.α will be a
c.a. real.

Let # be a computable bijection from the set of all triples 〈ϕ, i, c〉, where ϕ is
a c.p.f. from <N2 × N to <N2 and i < c are natural numbers. Also, let l be the
function defined by l(ϕ, c) = max{#(ϕ, i, c) : i < c} + 1.

Now, using oracle ∅′ we define α as follows. If ϕ(Ω � l(ϕ, c), i)↓ and is of length
l(ϕ, c), then let

α(#(ϕ, i, c)) = 1 − ϕ(Ω � l(ϕ, c), i)(#(ϕ, i, c)).

Otherwise, let α(#(ϕ, i, c)) = 0.
For all pairs 〈ϕ, c〉, α 6= [ϕ, c]Ω, because for all i < c, α � l(ϕ, c) 6= ϕ(Ω �

l(ϕ, c), i), as witnessed by bit #(ϕ, i, c). Thus α 6≤rK Ω. a
Let us end with one last question. We now know that Rd.c.e. ⊂ RΩ ⊂ Rc.a..

Is Rd.c.e. or Rc.a. a randomness class? That is, does Rd.c.e. or Rc.a. equal Ry for
any real number y?

By the proper inclusion of Theorem 4.1 and the technique in the proof of
Theorem 4.2, it follows that, here again, the answer is negative.

Theorem 4.3. For all y ∈ R, Rd.c.e. 6= Ry.

Theorem 4.4. For all y ∈ R, Rc.a. 6= Ry.

Proof of 4.3. Assume (toward a contradiction) that for some y ∈ R, Rd.c.e. =
Ry. Since Ω ∈ Rd.c.e. = Ry ⊆ RΩ, Ω ≤rK y ≤rK Ω, so that y ≡rK Ω. Thus
Rd.c.e. = Ry = RΩ, a contradiction. a

Proof of 4.4. Assume (toward a contradiction) that for some y ∈ R, Rc.a. =
Ry. Thus every c.a. real is ≤rK y. But carrying out the same construction as in
the proof of Theorem 4.2 with y in place of Ω —note that in the proof no special
properties of Ω, besides it being ≤T ∅′, were used— yields a c.a. real 6≤rK y, a
contradiction. a
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Appendix. The anonymous referee has suggested some interesting alterna-
tive proofs of the results of section 4. Based on the definition of rK-redubility (in
terms of conditional prefix-free complexity), they offer a different and valuable
perspective.

Alternative proof of Theorem 4.1. Let Ωshift be the shift of powers-of-
two-position bits of Ω (as a binary sequence), that is, for n ∈ N

Ωshift(n) :=

{
Ω(2n) if n = 2m for some m ∈ N

Ω(n) otherwise.
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Notice that Ωshift ∈ RΩ since at each length n, a program using Ω � n needs
to guess only one bit to compute Ωshift � n. However, Ωshift 6∈ Rd.c.e., so that
Rd.c.e. 6= RΩ.

To see this, assume (toward a contradiction) that Ωshift ∈ Rd.c.e.. From this
assumption we will build a computable set C and a c.p.f. ϕ such that for all
m ∈ C

ϕ(Ω � m) = Ω(m).

This contradicts the fact that Ω is random (in the sense of c.e. martingales).
Since Ωshift ∈ Rd.c.e., there is a computable sequence of rationals 〈Ωshift : s ∈

N〉 converging to Ωshift such that J :=
∑

s∈N
|Ωshift

s −Ωshift
s+1 | < ∞. Let 〈Ω : s ∈ N〉

be an increasing sequence of rationals converging to Ω and for each t ∈ N, let
Jt =

∑t−1
s=0 |Ωshift

s − Ωshift
s+1 | with J0 = 0. Notice that 〈J : t ∈ N〉 is a computable

sequence of rationals converging increasingly to J . Now, define two sequences of
natural numbers 〈s : n ∈ N〉 and 〈t : n ∈ N〉 as follows.

sn := the least s such that Ωs � 2n+1 = Ω � 2n+1 and

Ωshift
s � I = Ωshift � I, where I = [0, 2n+1) \ {2n};

tn := the least t such that Jt � (2n + 2) = J � (2n + 2).

Lastly, let A = {n ∈ N : sn ≤ tn} and B = {n ∈ N : n ≥ 1 ∧ sn > tn}.
Notice that if sn ≤ tn, then Ω � 2n+1 can be computed from J � (2n + 2), for

given J � (2n + 2) we can compute the least t (= tn) such that Jt � (2n + 2) =
J � (2n + 2). Then, since sn ≤ tn, Ωt � 2n+1 = Ω � 2n+1. Thus, by the
characterization of rK-reducibility from Theorem 2.2, there is a constanst c0

such that for all n ∈ A K(Ω � 2n+1|J � (2n + 2)) ≤ c0, implying that there are
constants c1, c2, c3 such that for all n ∈ A

K(Ω � 2n+1) ≤ K(J � (2n + 2)) + c1

≤ 2n + 2 + 2 lg(2n + 2) + c2

≤ 2n + 2n + c3.

Since Ω is random, this can happen for only finitely many n. So A is finite. Thus
B is cofinite, hence computable.

Let C be the computable set {2n+1 : n ∈ B} and let ϕ be the c.p.f. defined by

ϕ(σ) := Ωshift
s (2n)

if s is the least number such that Ωs � 2n+1 = σ and Ωshift
s � I = σshift � I (where

the shift operation and I are as above), and let ϕ be undefined if there is no such
s. Then for 2n+1 ∈ C

ϕ(Ω � 2n+1) = Ωshift
s (2n) = Ωshift

sn
(2n).

by definition of ϕ and sn.
If Ωshift

sn
(2n) 6= Ωshift(2n), then there is an m > sn such that Ωshift

m � 2n+1 =

Ωshift � 2n+1. Since Ωshift
sn

� 2n+1 and Ωshift
m � 2n+1 = Ωshift � 2n+1 differ only on

bit 2n and n ≥ 1, we have

Jm − Jsn
≥ |Ωshift

m − Ωshift
sn

| > 2−2n−2
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so that Jm � (2n + 2) 6= Jsn
� (2n + 2). This is a contradiction, since Jsn

�

(2n + 2) = Jm � (2n + 2) = J � (2n + 2) since tn < sn for n ∈ B.
Thus for 2n+1 ∈ C, ϕ(Ω � 2n+1) = Ωshift

sn
(2n) = Ωshift(2n) = Ω(2n+1), that is,

for all m ∈ C

ϕ(Ω � m) = Ω(m),

a contradiction. a
Alternative proof of Theorem 4.2. Let Ωeven and Ωodd be the the even-

position bits of and the odd-position bits of Ω (as a binary sequence), respectively,
that is, for n ∈ N

Ωeven(n) := Ω(2n) and

Ωodd(n) := Ω(2n + 1).

Notice that Ωeven, Ωodd ∈ Rc.a. since Ω ∈ Rc.a.. However, both Ωeven and Ωodd

can not be in RΩ, so that RΩ 6= Rc.a..
To see this, assume (toward a contradiction) that Ωeven, Ωodd ∈ RΩ. Then, by

the characterization of rK-reducibility from Theorem 2.2, there are constants c0

and c1 such that for all n K(Ωeven � n|Ω � n) ≤ c0 and K(Ωodd � n|Ω � n) ≤ c1.
Thus there is a c2 such that for all n K(Ω � 2n|Ω � n) ≤ c2 (by combining the
two underlying algorithms), implying that there are c3, c4 such that for all n

K(Ω � 2n) ≤ K(Ω � n) + c3 ≤ n + 2 lg n + c4.

This is a contradiction, since Ω is random. a
Alternative proof of Theorem 4.4. Actually, we show that for all y ∈

R, Rc.a. 6⊆ Ry. Assume (toward a contradiction) that for some y ∈ R, Rc.a. ⊆ Ry.
Then Ωeven, Ωodd ∈ Rc.a. ⊆ Ry. However, this is a contradiction since, by the
same proof as above with y � n in place of Ω � n, both Ωeven and Ωodd can not
be in Ry. a
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[5] Ming Li and Paul Vitányi, An introduction to Kolmogorov complexity and its

applications, second ed., Graduate Texts in Computer Science, Springer-Verlag, New York,
1997.

[6] David Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-
Verlag, New York, 2002, An introduction.

[7] Keng Meng Ng, Master’s thesis, National University of Singapore, In preparation.
[8] Marian B. Pour-El and J. Ian Richards, Computability in analysis and physics,

Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989.



RELATIVE RANDOMNESS AND REAL CLOSED FIELDS 13

[9] Walter Rudin, Principles of mathematical analysis, third ed., McGraw-Hill Book
Co., New York, 1976, International Series in Pure and Applied Mathematics.

[10] Xizhong Zheng and Klaus Weihrauch, The arithmetical hierarchy of real numbers,
MLQ Math. Log. Q., vol. 47 (2001), no. 1, pp. 51–65.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF WISCONSIN-MADISON

480 LINCOLN DR

MADISON, WI 53706, USA

E-mail : raichev@math.wisc.edu


