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Abstract. We construct a minimal rK-degree, continuum many, in fact. We also show that
every minimal sequence, that is, a sequence with minimal rK-degree, must have very low
descriptional complexity, that every minimal sequence is rK-reducible to a random sequence,
and that there is a random sequence with no minimal sequence rK-reducible to it.

1. Introduction

This article continues the study of relative randomness via rK-reducibility initiated in
[DHL04] and pursued in [Rai05].

One of the most popular definitions of absolute algorithmic randomness states that an
infinite binary sequence R is random if it is incompressible, that is, if

∃d ∀n . K(R � n) ≥ n− d,

where K(σ) is the prefix-free descriptional complexity of the string σ. Under this same
paradigm of incompressibility, one can define relative algorithmic randomness as follows.
An infinite binary sequence A is less random than an infinite binary sequence B if A is
completely compressible given B, that is, if

∃d ∀n . K(A � n|B � n) < d,

where K(σ|τ) is the conditional prefix-free descriptional complexity of σ given τ . In this
case, we write A ≤rK B for short and say “A is rK-reducible to B”.1

The ≤rK relation, which is fairly easily seen to be reflexive and transitive, enjoys the
following properties, all of which we will use throughout.

Theorem 1.1 ([DHL04]). For infinite binary sequences A and B, A ≤rK B is equivalent
to both of

• ∃d ∀n . C(A � n|B � n) < d
• there exists a computable partial function ϕ such that
∃d ∀n ∃i<d . ϕ(i, B � n) = A � n

and implies all three of

• ∃d ∀n . K(A � n) ≤ K(B � n) + d
• ∃d ∀n . C(A � n) ≤ C(B � n) + d
• A ≤T B
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Notice (from the second bullet, say) that a computable sequence is rK-reducible to any
given sequence. Also, from the fifth bullet, any sequence rK-reducible to a computable se-
quence is itself computable. So the computable sequences are those of least relative random-
ness, as they should be.

In what follows we answer a basic question: is there a sequence of minimal relative ran-
domness, that is, a sequence with only the computable sequences strictly less random (<rK)
than it? Indeed, as our title indicates, there is. In fact, there are continuum many. These are
our main results, which we prove in Section 2, and we follow them with three notes on such
minimal sequences in Section 3.

Before beginning, let us set some notation and conventions. N will denote the set of natural
numbers {0, 1, 2, . . .}, <N2 the set of binary strings, and N2 the set of infinite binary sequences.
‘String’ and ‘sequence’ without further qualification will mean ‘binary string’ and ‘infinite
binary sequence’, respectively. For strings σ and τ , |σ| will denote the length of σ, and στ or,
when that might cause confusion, σ ̂τ the concatenation of σ and τ . Also σ ⊆ τ and σ ⊂ τ
will mean σ is a initial segment of τ and σ is a proper initial segment of τ , respectively.
For a sequence A and a positive natural n, A � n will denote the length n initial segment
of A, that is, the string 〈A(0), A(1), . . . , A(n − 1)〉. Trees are subsets of <N2 closed under
initial segments. A path of a tree T is a sequence, every initial segment of which lies on/is
a member of T . The set of all paths of T will be denoted by [T ]. A Π0

1 tree is a tree whose
complement is computably enumerable, and a Π0

1 class is the set of all paths through such
a tree. Lastly, our notation for computability-theoretic notions follows that of [Soa87] and
[Odi89].

2. The main results

Theorem 2.1. There is a minimal rK-degree.

Proof. We construct a special binary tree, suitable paths of which will have minimal rK-
degree. Roughly speaking, we make the set of splitting nodes of our tree very sparse so that
any incomputable path of hyperimmune-free Turing degree can be recovered in two guesses
from its image under an rK-reduction. More precisely, we build a Π0

1 tree T such that

(1) T has no computable paths;
(2) for every computable function Φ : N→ N (thought of as a functional) and for every

path X of T there is a string ? ⊂ X such that either
(a) for every path Y of T extending ?, ΦY = ΦX , or
(b) for all pairs of distinct paths Y, Z of T extending ?, ΦY and ΦZ are incompatible;

(3) the set S of splitting nodes of T is very sparse, to wit, for all computable functions
g : N→ N we have

∀∞σ∈S ∀τ ∈S . σ ⊂ τ → g(|σ|) < |τ |.
Constructing T . We build T in stages, beginning with the full binary tree and pruning

it computably. To describe this pruning we use moving markers in the style of [Ste01]. For
notational niceness stage subscripts are suppressed whenever possible.

Let {mσ : σ ∈ <N2} ⊆ <N2 denote the set of markers of T . These are/lie on the splitting
nodes of T . At stage zero, T = <N2 and each mσ = σ. At later stages when necessary T is
pruned via the Cut procedure. For σ ⊂ τ Cut(mσ,mτ ) cuts off all paths of T that extend
mσ but not mτ and then updates the positions of all the markers, preserving their order, as
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follows: mσ moves to mτ , each mσε moves to mτε, and all other markers stay put. Since Cut
is the only action ever taken, T will be a perfect tree without leaves at every stage.

At stage s > 0 the construction runs as follows, where each check is performed only when
the markers involved have indices of length ≤ s; also, the computations involved are only up
to stage s.

• If there exist σ, i < 2, and e ≤ |σ| such that for all x ≤ |σ|, Φe(x) = mσi(x), then
Cut(mσ,mσ(1−i)).
• If there exist σ, δ, ε, and e ≤ |σ| such that Φmσ0

e and Φmσ1
e are compatible for all

arguments ≤ |σ|, but Φmσ0δ
e and Φmσ1ε

e are incompatible at some argument ≤ |σ|,
then Cut(mσ0,mσ0δ) and Cut(mσ1,mσ1ε).
• If there exist σ, τ , υ, and e ≤ |σ| such that σ ⊂ τ ⊂ υ and |mτ | ≤ Φe(|mσ|) < |mυ|,

then Cut(mτ ,mυ).

It is not difficult to check that each marker eventually settles and that, in the end/limit,
T satisfies properties (1)-(3).

A suitable path of T . Let A be a path of T of hyperimmune-free Turing degree.2 Such a
path exists by the Hyperimmune-free Basis Theorem ([JS72]) since [T ] is a nonempty Π0

1

class. We show that A has minimal rK-degree. By (1) A is incomputable. Let B ≤rK A be a
incomputable set. We need to show that A ≤rK B. To this end, observe that B ≤T A, and,
in fact, B ≤tt A since A has hyperimmune-free Turing degree (see [Odi89, page 589]). Let Φ
be a computable functional (total on all oracles) that witnesses the truth-table reduction.

We come now to the heart of the argument: building an rK-reduction from B to A. Let
? be the magic string of (2) for Φ and A. Given B � n for n sufficiently large, run through
the computable approximation (that thins) to T until a stage t is reached such that Tt (the
stage t approximation of T ) has at most two extensions of ? of length n with extensions in
Tt that map to B � n under Φ. The key here is that such a stage is guaranteed to exist by
Lemma 2.2 below. To find these extensions and extensions computably from B � n we use the
fact that Φ is total on all oracles and has a computable use function. Output the (at most)
two strings of length n found; one will be A � n. Except for finitely many short lengths, this
procedure describes an rK-reduction from B to A. Extending it to all lengths gives the final
reduction. �

Lemma 2.2. Let ? be the magic string of (2) for A. For almost all lengths n and almost
all stages t, Tt has at most two extensions of ? of length n with extensions in Tt that map
to B � n under Φ.

Proof. Let ϕ be the computable use function for the tt-reduction Φ. Let f be the function
defined for m ≥ | ? | by f(m) equals the first stage s such that for all strings ν ⊃ A �
m (̂1 − A(m)) of length ϕ(s) on Ts, there exists x ≤ s such that Φν(x)↓ 6= ΦA(x). (Notice
that all ν extend ?.) For m < | ? |, define f(m) to be 0, say. It is unimportant. Note that f is
total, for if not, then for all s there exists a string νs ⊃ A �m (̂1−A(m)) of length ϕ(s) on
Ts such that for all x ≤ s, Φνs(x) = ΦA(x). (Remember that Φ is total on all oracles.) Then
the sequence Y defined by Y (n) = lim infs νs(n) is a path of T different from A such that
ΦY = ΦA. But this is a contradiction, because (2b) holds for X = A since B is incomputable.

2That is, for every total function f ≤T A, there exists a computable function g such that for all x,
g(x) ≥ f(x). Put more concisely, every total function computable from A has a computable majorant.

3



Also, f is A-computable by definition. Thus, since A has hyperimmune-free Turing degree,
there is a computable function g majorizing f .

Now, fix n bigger than the length of ?, the length that (3) takes effect for g, and the length
of the first splitting node of A on T . Let τ be the last splitting node of T on A � n, and let
σ ⊂ τ be any other splitting node of T extending ?. Then by (3) we have that

s := f(|σ|) ≤ g(|σ|) < |τ | ≤ n.

So by stage s every string ν ∈ Ts extending A � |σ| (̂1 − A(|σ|) = σ (̂1 − A(|σ|) will have
some number x ≤ s < n such that Φν(x)↓ 6= ΦA(x) = B(x), so that ν cannot map to B � n
under Φ. Since σ was an arbitrary splitting node of T below the last splitting node of A � n,
we see that only the strings extending the last splitting node of A � n can map to B � n under
Φ. Similarly, by considering s′ := f(|τ |) ≤ n, any splitting node of T of length n extending
τ can not have extensions in T ′s mapping to B � n under Φ. So the result holds. �

In fact, by a generalized hyperimmune-free basis theorem below, the tree of the proof of
Theorem 2.1 has continuum many paths of hyperimmune-free Turing degree. Thus, since
every rK-degree is countable, there are continuum many minimal rK-degrees.

Theorem 2.3. Every nonempty Π0
1 class with no computable members has 2ℵ0 paths of

hyperimmune-free Turing degree.

Proof. By basic facts from the theory of Π0
1 classes, we can assume without loss of generality

that our Π0
1 class is the set of paths through a tree T0 that is infinite, computable, and has

no computable paths. We modify slightly the proof of the Hyperimmune-free Basis Theorem
in [JS72] by way of an extra parameter sequence X. For each sequence X we construct
(computably in X ⊕ ∅′′) computable subtrees S1 ⊃ T1 ⊇ S2 ⊃ T2 ⊇ · · · of T0 such that
their only common path Y has hyperimmune-free Turing degree. We then show that the
map X 7→ Y is one-to-one.

To this end, fix X and, starting from T0, let Se and Te be defined recursively as follows.
Let Ue,x be the computable tree {τ : Φτ

e,|τ |(x)↑ }.
(1) If for all x, Te ∩Ue,x is finite, then Se := Te. Otherwise, choose x least such that Ue,x

is infinite and Se := Te ∩ Ue,x.
(2) Since Se is an infinite tree with no computable paths, it has at least two paths. Let

σ be the length-lexicographic least node of Se such that σ0 and σ1 have paths in Se
through them.

(3) Te+1 := {τ ∈ Se}τ ⊆ σ ̂X(e) ∨ τ ⊃ σ ̂X(e).

By induction each [Te] and [Se] is nonempty, so that
⋂
e[Te] ∩ [Se] is nonempty, being

the intersection of a decreasing sequence of closed nonempty sets in the compact space N2.
Choose (the unique) sequence Y ∈

⋂
e[Te]∩[Se]. It will have hyperimmune-free Turing degree,

for fix a natural e and consider the function ΦY
e . If for every x, Te ∩ Ue,x is finite, then the

following function is total, computable, and majorizes ΦY
e .

g(x) = max{Φτ
e,|τ |(x)}τ ∈ Te ∧ |τ | = lx,

where lx is least such that Φτ
e,|τ |(x) is defined for each τ ∈ Te of length lx. If there exists some

x such that Te ∩Ue,x is infinite, then Φτ
e,|τ |(x) is undefined for infinitely many τ ∈ Te, and Se
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is the set of all these τ . Since all prefixes of Y are in Se, this means ΦY
e (x) is undefined, so

that ΦY
e is not total.

Also, the map X 7→ Y is one-to-one, for if two sequences X1 and X2 differ, and e is the
first place at which this happens, then the corresponding trees Se(X1) and Se(X2) are the
same, but the intersection of Te+1(X1) and Te+1(X2) is finite since one contains the nodes
above σ0 and the other the ones above σ1. Thus Y (X1)(|σ|) 6= Y (X2)(|σ|). �

3. Three notes

From now on let us call a sequence with minimal rK-degree a ‘minimal sequence’. As one
might expect, minimal sequences have low initial segment complexity. Indeed, so low that
they are close to being computable in the sense of Chaitin’s characterization (see [Cha76]):
a sequence X is computable iff ∃d ∀n . C(X � n) ≤ C(n) + d.

Proposition 3.1. If A is a minimal sequence, then for any computable unbounded increas-
ing function g : N→ N,

∃d ∀n . C(A � n) ≤ C(n) + g(n) + d and

∃d ∀n . K(A � n) ≤ K(n) + g(n) + d.

In particular, A cannot be random.

We prove this with dilutions.

Definition 3.2. For X ∈ N2 and f : N → N strictly increasing, the f -dilution of X is the
sequence defined by

Xf (n) =

{
X(m) if n = f(m) for some (unique) m

0 else.

Notice that for any sequence X and any strictly increasing computable function f , Xf ≤rK

X and Xf ≡T X.

Proof of Proposition 3.1. Fix A and g as in the hypothesis. The idea is that since A is a
minimal sequence, it is rK-reducible to every one of its computable dilutions. Picking a
dilution appropriate to g will give the desired complexity bound.

We prove the bound for K. The argument for C is identical. Define the function f : N→ N
recursively by

f(0) = 0;

f(x) = the least n such that n > f(x− 1) and g(n) ≥ 4x.

Since g is unbounded and increasing, f is well-defined. Also, by construction f is computable,
total, and strictly increasing. Furthermore, for any given n, if x is the greatest number such
that f(x) ≤ n, then g(n) ≥ 4x.

Since A is minimal, A ≤rK Af via some [ϕ, e]. Now fix n and choose x greatest such that
f(x) ≤ n. Observe that inserting zeros into A � x in the appropriate computable places
produces Af � n. So to describe A � n, besides a few computable partial functions given
ahead of time, one only needs the correct i < e such that ϕ(i, Af � n) = A � n, the value n
and A � x. This information can be coded, up to a uniform constant, by a string of length
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K(n) + 2K(A � x). The factor of 2 comes from concatenating strings in a prefix-free way. So,
up to a uniform additive constant, for all n,

K(A � n) ≤ K(n) + 2K(A � x) ≤ K(n) + 4x ≤ K(n) + g(n),

as desired. Now fixing g as, say, g(n) = blg(n+ 1)c, we see that A cannot be random. �

Using dilutions again, we also get the following.

Proposition 3.3. Every minimal sequence is rK-reducible to a random sequence.

Proof. Fix a minimal sequence A, and choose a random sequence R ≥wtt A with use ma-
jorized by f(n) = 2n. This is possible since every sequence has such a random ([Kuč85],[Gác86];
see also [MM04] for a more recent proof using martingales). Then R ≥rK Af ≥rK A, by the
minimality of A, as desired. �

Do all sequences have randoms rK-above them? That question is still open and seemingly
difficult.

We end with one last note, a contrast to Proposition 3.3.

Proposition 3.4. There is a random sequence with no minimal sequence rK-reducible to
it.

Proof. Let R be a random sequence of hyperimmune-free Turing degree. Such a sequence
exists by the Hyperimmune-free Basis Theorem applied to the complement of any member
of a universal Martin-Löf test. Then R has no minimal sequence reducible to it.

To see this, assume (toward a contradiction) there is some minimal sequence A such that
A ≤rK R. Since R has hyperimmune-free Turing degree, so does A and A ≤tt R. Since A is
incomputable and truth-table reducible to a random sequence, A is Turing equivalent to some
random sequence S (see [Dem88]). Since A has hyperimmune-free Turing degree, S ≤tt A
via some computable partial function with computable use function f . Thus, disregarding
floor functions and uniform constants for ease of reading, we have that for all n

n ≤ K(S � n) (since S is random)
≤ 2K(A � f(n)) (using the tt-reduction)
≤ 2K(f(n)) + 2 lg n (by Proposition 3.1)
≤ 2K(n) + 2 lg n (since f is computable)
≤ 4 lg n,

a contradiction. �

Remark 3.5. Do maximal rK-degrees exist? That basic question is still open.
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